زی زی فایل

دانلود فایل

زی زی فایل

دانلود فایل

مبدل های حرارتی اصلی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 74

 

فهرست مطالب

عنوان

مقدمه

فصل اول- معرفی انواع مبدل های حرارتی

- مبدل های پوسته- لوله ای و انواع آن

- پارامترهای عملیاتی تعیین کننده مبدل های پوسته لوله ای

- خصوصیات مبدل پوسته لوله ای Fixed Tube Sheet

- خصوصیات مبدل پوسته لوله ای U- Type

فصل دوم- پارامترهای طراحی مکانیکی

- قطر و ضخامت لوله ها

- طول لوله ها

- آرایش لوله ها

- لوله های دو فلزی و پرده دار

- صفحه جدا کننده

- بافل های عرضی و لبه های بافل ها

- ضخامت بافل

- حداکثر طول آزاد و بدون تکیه

- بافل های طولی

- صفحه برخورد

- آخرین محدوده لوله گذاری (OTL)

- محاسبه تعداد لوله ها

فصل سوم- اطلاعات طراحی

- انواه محاسبات کاربردی در مبدل های حرارتی

- روش LMTD

- محاسبه U

- متد کلی مسئله طراحی

- روش NTU در طراحی یک مبدل

فصل چهارم- روابط مهم در تعیین ضریب انتقال حرارت و افت فشار

- معادلات و روابط مربوط به تازل و درپوشها

- تازل های ورودی و خروجی سمت لوله

- افت فشار تازل سمت پوسته

- بررسی فاکتور J در میزان انتقال حرارت و وابستگی آن به ضریب انتقال حرارت

- تعیین J بر مبنای عده ناسلت

- تعیین J بر مبنای عدد استاتن

فصل پنجم- روشهای طراحی و محاسباتی مبدل ها

- روش Kem

- محاسبه افت فشار سمت پوسته در روش Kem

- روش Bell

- معرفی فاکتورها در روش Bell

- روش تینکر (Tinker)

- محاسبات مربوط به پوسته F

- رسوب گرفتگی (Fouling)

- ارتعاش (Vibration)

- سروصدا (Noise)

- الگوریتم عمومی در طراحی مبدل های پوسته- لوله ای

- روش طراحی سریع مبدل های پوسته- لوله ای

- ارتباط بین افت فشار و ضریب انتقال حرارت

فصل ششم- حل دستی یک مثال طراحی

اطلاعات طراحی و داده های مکانیکی در طراحی مبدل

محاسبات

محاسبات مربوط به Tubie Side

محاسبات مربوط به پوسته

حل دستی مثال فوق از طریق فاکتور عملکرد (Duty factor)

حل مسئله از طریق روش الگوریتم سریع Rapid Design

جدول مقایسه ای متدهای مختلف طراحی

فصل هفتم- راهنمای برنامه کامپیوتری برای روشهای (Rapid Design- Bell- Kem)

مقدمه:

تعریف داده های ورودی و متغیرهای به کار رفته در برنامه

داده هایی که فقط در روش Bell به کار رفته اند و تعریف آنها

روش و ترتیب وارد کردن داده های مورد نیاز در هر روش

روش اجرای برنامه

خروجیهای برنامه

توضیح خروجیها به ترتیب (روس Kem)

خروجیهای روش Bell به ترتیب برنامه

خروجیهای روش Rapid design

فصل هشتم- الگوریتم و پرینت برنامه و خروجیهای آن

الگوریتم متد Kem

الگوریتم متد Bell

الگوریتم متد Rapid design

مراجع و منابع مورد استفاده در این پروژه

خلاصه:

فرایند تبادل گرما بین دو سیال، دماهای مختلف که بوسیله ی دیواری جامد از هم جدا شده اند. در بسیاری از کاربردهای مهندسی دیده می شود. وسیله ای که این تبادل حرارتی را در بسیاری از فرایندها صورت می دهد، مبدلهای حرارتی (Heat Exchangers) می باشند که کاربردهای خاص آنها را می توان از سیستمهای گرمایش ساختمانها و تهویه مطبوع گرفته تا نیروگاهها، پالایشگاهها و فرآیندهای شیمیایی به وضوح مشاهده کرد

طراحی با پیش بینی عملکرد این دستگاهها مبتنی بر اصول انتقال گرما می باشد. در این پروژه سعی شده تا اختصاصا در مورد مبدل های پوسته– لوله ای (Shell-ans-Tube) به علت سادگی، کاربرد وسیع و وجود استانداردها و اطلاعات فراوان تر کتابخانه ای آنها بحث و بررسی شود. در این بررسی ضمن معرفی کلی این مبدل ها، کاربرد آنها، نحوه ی طراحی و عملکرد آنها به سه روش کرن (Kerm’s Method) و بل (Bell’sMethod) و روش الگوریتم سریع (Rapid Design) و جهت بررسی عملکرد



خرید و دانلود  مبدل های حرارتی اصلی


عملیات حرارتی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 20

 

 

دانشگاه آزاد اسلامی

واحد کرج

گزارش کار:

آزمایشگاه عملیات حرارتی

استاد:

مهندس میر آخوری

تهیه و تنظیم:

سید یاسر موسوی

شماره دانشجویی:

82473435212

زمستان86

آزمایش شماره 1

عنوان آزمایش : بررسی اثرسرعت سرد کردن در ریزساختار طولی و خواص مکانیکی فولاد

مقدمه

فریت

محلول جامد بین نشینی کربن در آهن با شبکه بلوری مکعب مرکز دار به فریت موسوم است.حلالیت کربن در آهن فریتی به مراتب کمتر از حلالیت آن در آهن آستنیتی است. به طوریکه حد حلالیت کربن در فریت حداکثر 0.02 درصد در 727 درجه سانتیگراد است که با کاهش دما به طور پیوسته کاهش یافته و در دمای اتاق به مقدار ناچیزی خواهد رسید.

آستنیت

آستنیت عبارتست از محلول جامد بین نشینی کربن در آهن با شبکه بلوری مکعبی با وجوه مرکزدار (fcc) است کربن با وارد شدن در شبکه بلوری آهن آستنیتی ، ناحیه تشکیل و پایداری آستنیتی را در فولادها گسترش می دهد . با اضافه شدن کربن ناحیه پایداری آستنیت از 912 تا 1394 درجه سانتیگراد که گستره تشکیل و پایداری آستنیت است ، به گستره وسیعی از دما و ترکیب شیمیایی افزایش می یابد .

ماتنزیت

در آلیاژهای آهن - کربن و فولادها ، مارتنزیت از سریع سرد کردن آستنیت بدست می آید . از آنجایی که دگرگونی آستنیت به مارتنزیت بدون نفوذ انجام می شود. بسته به ترکیب شمیایی آلیاژ، تا 2درصد کربن، مارتنزیت دقیقا همان ترکیب شمیایی آستنیت اولیه را دارد .

در تشکیل فاز مارتنزیت کربن در فضای هشت وجهی شبکه bcc محبوس شده و فاز جدید مارتنزیت را بوجود می آورد . با تشکیل مارتنزیت ، کربن محلول در شبکه bcc به مقدار زیادی افزایش پیدا می کند . با افزایش درصد کربن محلول در شبکه ، جاهای خالی بیشتری از شبکه توسط کربن اشغال می شود ، درنتیجه شبکه بلوری از bcc به bct میل میکند که در آن پارامتر c شبکه بزرگتر از دو پارامتر دیگر a است نسبت c/a که تتراگونالیته شبکه می بتشد با افزایش میزان کربن افزایش میابد .

از آنجایی که در تشکیل مارتنزیت نفوذ نقشی ندارد ، مارتنزیت فازی ناپایدار است . اگر مارتنزیت تا دمایی حرارت داده شود که اتم های کربن قدرت کافی جهت نفوذ پیدا کنند ، از فضاهای خالی هشت وجهی خارج شده و تشکیل سمانتیت می دهند . در نتیجه شبکه بلوری مارتنزیت از حالت هشت وجهی خارج شده و فازهای تعادلی در نمودار آهن کربن یعنی فریت و سمانتیت به وجود می آیند .

مارتنزیت در اثر یک دگرگونی برشی بوجود می آید . در این مکانیزم ، جهت انجام دگرگونی اتم های زیادی با هم و به طور همزمان جابجا می شوند . این جابجایی گروهی اتم ها ، کاملا متفاوت از جابجایی انفرادی آنها و حرکت در فصل مشترک ، از فاز قدیم به فاز جدید است .

بینیت

بینیت در فولادها در گستره دمایی بین پایینترین دمای تشکیل پرلیت و بالاترین دمای تشکیل مارتنزیت تشکیل می شود . بینیت همانند پرلیت ، یک فاز نیست بلکه مخلوطی از دو فاز فریت و سمنتیت است . بنابراین دگرگونی بینیتی نیاز به تغییر ترکیب شیمیایی دارد و در نتیجه برای انجام آن نفوذ کربن لازم است . تغییر ترکیب شیمیایی که در دگرگونی بینیتی انجام می شود شامل عناصر آلیاژی جانشینی که ممکن است در فولادها وجود داشته باشد ، نمی شود . بنابراین درصد عناصر آلیاژی در فازهای فزیت و سمنتیت ثابت و برابر همان ترکیب شیمیایی اولیه آستنیت است . همچنین برخلاف پرلیت محصول حاصل از دگرگونی بینیتی شامل لایه های متناوب فریت و سمنتیت نیست و همچنین رشد آن به صورت صفحه ای است .

شرح آزمایش :

در ابتدا یک میله فولادی را انتخام می کنیم و سه نمونه مسطح mm 15با اره دستی می ریم و سپس عملیات سوهان کاری و صیقل کاری را بر روی سه نمونه فولادی بریده شده انجام می دهیم و سپس با سنباه های نمره مختلف عمل سنباده زنی را بر روی یکی از سطوح نمونه ها انجام می دهیم.سپس سه نمونه فولادی را پس ازعلامتگذاری در کوره در دمای 900درجه سانتیگراد می گذاریم . زمان نگه داشتن قطعات بستگی به حجم قطعات دارد . سپس یکی را در آب ، یکی را در حمام روغن و آخری را در هوا سرد می کنیم . سپس قطعات را اچ ومتالوگرافی می کنیم و در نهایت سختی آنها توسط دستگاه سختی سنج اندازه گرفته می شود.

1- نمونه سرد شده در آب :

نمونه را پس از در آوردن از کوره به سرعت وارد آب میکنیم و آن را در آب حرکت می دهیم تا حباب در اطراف قطعه تشکیل نشود چون حباب های تشکیل شده باعث می شود که انتقال حرارت به سرعت انجام نگیرد پس باید قطعه را در اب حرکت داد تا حباب های تشکیل شده در اطراف قطعه ازبین بروند در این حالت دمای نمونه به سرعت تا زیر دمای تشکیل مارتنزیت افت کرده و چون فرصت کافی برای نفوذ وجود ندارد پس امکان تشکیل فازهای پرلیت و بینیت وجود ندارد و تمام قطعه مارتنزیتی میشود . سختی در این حالت 63راکول سی بدست آمد که بیشترین عدد سختی، همین حالات می باشد.

2- نمونه سرد شده در روغن :

در این حالت نمونه پس از آستنیته شدن کامل ، سریعا از کوره خارج شده و توسط یک انبر آهنی ،نمونه در داخل حمام روغن قرار می گیرد . در این حالت آهنگ سرد شدن بیشتر از نرماله کردن می باشد و ساختار بدست آمده در این حالت مخلوطی از پرلیت و مارتنزیت می باشد .عدد سختی در این حالی برابر با 45 راکول سی بدست آمد.



خرید و دانلود  عملیات حرارتی


به دلیل تمرکز حرارتی بالا

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

به دلیل تمرکز حرارتی بالا، پیچیدگی در جوش کم تر می شود.

در مناطقی که وزش باد وجود دارد مشکلی به وجود نمی آید.

برای ضخامت های کمتر از 12 میلیمتر نیاز به لبه سازی و پخ نیست.

جوشکاری بدون جرقه و دود انجام می شود.

مخفی بودن قوس باعث کاهش عوارض نور شدید می شود.

محدودیت های فرایند جوش زیر پودری:

احتیاج به نگهداری پودر روی موضع جوش است بنابراین فقط در حالت کف استفاده دارد.

فاصله درز باید بسیار با دقت تنظیم شود.

عدم جدا شدن سرباره به خصوص در جوشهای چندپاسه سبب حبس شدن ذرات در جوش می شود.

مخفی بودن قوس کنترل محل دقیق جوشکاری را مشکل می کند.

تجهیزات این روش جوشکاری گران می باشد.

مسیر جوشکاری می بایست کاملاً مستقیم باشد.

چدن و آلیاژهای آلومینیوم،سرب ورودی را نمی توان با ان روش جوشکاری کرد.

جوشکاری قوس تنگستنیGas Tungsten Arc Welding(GTAW)

در فرایند GTAW از قوسی که میان الکترود مصرف نشدنی تنگستن و حوضچه مذاب برقرار است استفاده می کنیم. در این فرایند از گاز محافظ استفاده کرده و هیچ فشاری اعمال نمی شود. این فرایند می تواند با اضافه کردن فلز پر کننده یا بدون آن انجام شود. در این فرایند از الکترود مصرف نشدنی تنگستن که درون یک مشعل (Torch) قرار می گیرد استفاده می شود، گاز محافظ از درون مشعل تغذیه شده تا الکترود و حوضچه مذاب و انجماد فلز جوش را از آلودگی اتمسفری محافظت کند. قوس الکتریکی با عبور جریان از گاز یونیزه شده رسانا به وجود می آید. وقتی قوس و حوضچه مذاب ایجاد شد مشعل در طول درز اتصال حرکت کرده و قوس به تدریج سطوح تماس را ذوب می کند.

فلزات پایه:

اغلب فلزات می توان با این فرایند جوش داد. از آن جمله می توان به رده های مختلف فولاد های کربنی، کم آلیاژی، زنگ نزن و دیگر آلیاژ های آهنی اشاره کرد. هم چنین آلیاژهای مقاوم به حرارت، آلیاژهای آلومینیوم، آلیاژهای منیزیم، مس و آلیاژهای آن ( مانند مس- نیکل- برنز- برنج) و آلیاژهای نیکل اشاره کرد.برخی فلزات باید با فرایند GTAW جوش داده شوند. زیرا بهترین محافظت از آلودگی توسط اتمسفر با این روش انجام می گیرد.GTAW برای جوشکاری فلزات دیر گداز و فلزات فعال و بعضی از آلیاژهای غیر آهنی مناسب است.

مزایا:

این فرآیند جوشکاری با کیفیت بالا که عموما عاری از عیوب هستند را بوجود می آورد.

این فرآیند عاری از ترشح(spatter) است.

در این فرآیند امکان کنترل عالی نفوذ پاس ریشه وجود دارد.

در این فرآیند قادر به کنترل دقیق متغیرهای جوشکاری هستیم.

این فرآیند برای جوشکاری اغلب فلزات،همچنین اتصال فلزات غیرمشابه به کار می رود.

در این فرآیند اجازه کنترل مجرای منبع حرارت و فلز پرکننده را داریم.

این فرآیند در همه وضعیت ها قابل استفاده است.

جوشکاریGTAW برای اتصال مواد نازک(حتی با ضخامت0.125 میلیمتر)مناسب است.

قدرت تمرکز حرارتی بسیار بالای این فرایند (درجه حرارت قوس زیاد و قوس متمرکز است) امکان جوشکاری فلزاتی با هدایت حرارتی بالا مثل مس را می دهد.

این فرایند روش بسیار خوبی برای جوشکاری فلزات غیر آهنی (AL,Mg,Ni,Co) فولاد زنگ نزن، فلزات مقاوم به حرارت است.

GTAW فرایند بسیار تمیزی هم از لحاظ ظاهر و هم از لحاظ متالوژیکی است. زیرا اولاً سرباره ندارند و ثانیاً بهترین کنترل در ترکیب شیمیایی جوش و کم ترین مقدار ناخالصی در فلز جوش وجود دارد. پس برای آلیاژهای حساس استفاده می شود.

هم از جریان متناوب و هم از جریان مستقیم می توان استفاده کرد.

بهترین روش برای فلزاتی است که لایه اکسیدی دارند.

محدودیت های GTAW:

نرخ رسوب این فرایند نسبت به دیگر فرایند های قوسی با الکترود مصرف شدنی پایین است.

این فرایند نیاز به مهارت بیشتر جوش کاری نسبت به GMAW و SMAW دارد.

استفاده از این فرایند برای مقاطع ضخیم و بزرگتر از 10 میلیمتر مناسب نمی باشد چون حرارت زیاد باعث ذوب شدن تنگستن و آلودگی جوش می گردد.

در محیط های بادگیر محافظت مناسب منطقه جوش مشکل است.



خرید و دانلود  به دلیل تمرکز حرارتی بالا


عملیات حرارتی آلیاژهای آلومینیوم

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 25

 

عملیات حرارتی آلیاژهای آلومینیوم

در آلیاژهای Al-Cu ، رسوبات غیر تعادلی زیادی در دماهای کمتر از دمای جامد تشکیل می شود.در این آلیاژها، با سرد کردن محلول جامد فوق اشباع ،رسوبات تشکیل می شود. این رسوبات با افزایش درجه حرارت و یا افزایش زمان بین دمای اتاق و دمای جامد گسترس می یابد. توالی تشکیل رسوبات بصورت زیر است:

SSSS → GP zones → Ө ״ → Ө′ →Ө (Al2Cu)

دردماهای پیرسازی طبیعی (-20 .. 60 C) آرایش اتمهای مس از حالت تصادفی به حالت منظم دیسکی شکل تبدیل می شود.این صفحات در جهات کریستالوگرافیکی خاصی در زمینه تشکیل می شوند. که به مناطق GP مشهورند. این مناطق حوزه های کرنشی کوهئرنتی تشکیل می دهند که افزایش مقاومت در برابر تغییر شکل را باعث می شوند. در واقع عامل اصلی افزایش استحکام تشکیل مناطق GP می باشد.دردماهای بالا ، حالت گذرایی از Al2Cu تشکیل می شود که باز استحکام افزایش می یابد. در حالت بیشترین استحکام، هر دو فاز ״Ө و ′Ө می توانند همزمان وجود داشته باشند.هر چه دما یا زمان افزایش یابد، نسبت فاز Ө ذر ریزساختار افزایش می یابد. خواص مکانیکی کاهش می یافته و آلیاژ نرم می شود یا به عبارتی فراپیری Overage رخ می دهد.

آندسته از آلیاژهای کارشده که عملیات حرارتی باعث افزایش استحکام آنها می شودعبارتند از 7xxx,6xxx,2xxx (به غیر از 7072) و نیز آلیاژهای ریختگی 2xx.x,3xx.x و 7xx.x .برخی از این آلیاژها، علاوه بر عناصر اصلی آلیاژی، افزودنی های دیگری از جمله مس ، منگنز،منیزیم و روی نیز دارند.مقادیر کمی از منیزیم افزوده شده باعث بهتر شدن خاصیت رسوب سختی می شود.

در برخی از آلیاژها، دردمای اتاق و در مدت چند روز ، رسوبات کافی در ریزساختار تشکیل می شود تا محصولات پایدار و خواص معینی را سبب شود که برای کاربردهای مورد نظر مناسب باشد. این آلیاژهای را گاها رسوب سختی انجام می دهند تا استحکام و سختی آنها افزایش یابد.در کنار این آلیاژها ، آلیاژهایی وجود دارند که واکنش رسوب سازی آنها بسیار کند رخ میدهد فلذا بایستی قبل از استفاده رسوب سختی شوند.

رسوبسختی از فرآیندهایی هست که در دماهای کم و زمانهای طولانی انجام می گیرد. معمولا این فرآیند در دماهای 115-190 C و بمدت 5- 48 ساعت می باشد.سیکلهای دما- زمان باید با دقت انتخاب شود.در دماهای بالا و زمانهای زیاد رسوبات درشت تشکیل می شود.که تعداد این ذرات کم ولی فاصله زیادی دارند.هدف، انتخاب سیکل مناسب برای دستیابی به اندازه و الگوی توزیع مناسب بهینه است.متاسفانه سیکلی که برای افزایش یکی از خواص مثل استحکام نهایی استفاده می شود با سیکلی که برای افزایش خواص دیگر مثل استحکام تسلیم و مقاومت خوردگی بکار می رود، متفاوت است.

عملیات حرارتی که برای افزایش استحکام بکار میرود(در آلیاژهای الومینیوم) از سه مرحله بنیادی زیر تشکیل می شود:

عملیات حرارتی انحلالی: انحلال فازهای قابل حل

کوئنچ: گسترش محلول فوق اشباع

پیرسازی: رسوب اتمهای حل شده در دمای اتاق(پیرسازی طبیعی)یا در دماهای بالا(پیرسازی مصنوعی یا همان رسوب سختی)

 

عملیات حرارتی آلیاژهای آلومینوم-1

در آلیاژهای آلومینیوم ، عملیات حرارتی برای آلیاژهای معینی بکار می رود که که می توان با آن استحکام و سختی را افزایش داد.این آلیاژها را عملیات حرارتی پذیر Heat treatable می گویند.در برابر این آلیاژهایی وجود دارند مه که با سیکل های حرارتی و سرد کردن نمی توان استحکام آنها را افزایش داد.برای مشخص کردن و تمییز قایل شدن با آلیاژهای قبلی ، این آلیاژهای را عملیات حرارتی ناپذیر None-heat treatable می نامند.تنها روش استحکام این آلیاژها، انجام کار سرد است.حرارت دادن هر دو نوع آلیاژ تا دمای مشخص برای افزایش داکتیلیتی و کاهش استحکام (آنیل) متداول بوده و با توجه به درجه نرم شدن ، واکنش هاس متالورژیکی مختلفی در ریزساختار رخ می دهند

خاصیت بسیار مهم در سیستم های آلیاژی رسوب سختی شونده ، وابستگی قابلیت انحلالی تعادلی به دما است که با افزایش درجه حرارت ، قابلیت انحلالی نیز افزایش می یابد.این رفتار در اکثر سیستم های دوتایی Al مشاهده می شود هرچند که در برخی از آلیاژهای آن رسوب سختی کمتری دیده می شوند که همان آلیاژهای عملیات حرارتی ناپذیر را تشکیل می دهند.به عنوان مثال، در آلیاژهای با سیستم دوتایی Al-Si,Al-Mn ، خواص مکانیکی بعد از عملیات حرارتی افزایش نمی یابد با این وجود رسوبات قابل توجهی تشکیل می شود

رابطه دما – انحلال برای سیستمهای رسوب سختی Al-Cu توضیح داده میشود. قابلیت انحلال مس در آلومینیوم با افزایش دما افزایش می یابد.(0.25 % در دمای 250 C به



خرید و دانلود  عملیات حرارتی آلیاژهای آلومینیوم


عایق کاری جدید

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 23

 

فرآورده‌های عایق‌کاری حرارتی جدید

هدف از عایق‌کاری حرارتی، کاهش گرمای انتقال یافته یا به حداقل رساندن اثرات شیوه‌های جداگانه انتقال حرارت است و فرآورده های جدید سعی در تحقق بهتر این هدف دارد چندی پیش دوره‌های تخصصی آموزش آشنایی با مصالح ساختمانی جدید در مرکز تحقیقات ساختمان و مسکن برای گروهی از متخصصان و دست‌اندرکاران امر ساختمان برگزار شد.بخشی از این دوره آموزشی به فرآورده‌های عایق‌کاری حرارتی جدید در ساختمان اختصاص داشت که سهراب ویسه و ناهید خدابنده در این دوره‌های آموزشی به ارایه این مباحث و معرفی عایق های حرارتی جدید پرداختند. شرح این مباحث در پی می آید. اگر عایق به درستی نصب شود، انتقال گرما که از طریق جدارهای ساختمان انجام می‌شود کاهش می‌یابد. هدف از عایق‌کاری حرارتی، کاهش گرمای انتقال یافته یا به حداقل رساندن اثرات شیوه‌های جداگانه انتقال حرارت است. برای مثال عایق پتویی پشم شیشه یا یک تخته صلب پلی استایرن که فضای خالی دیوار دو جداره را پر می‌کند، انتقال حرارت را با تبدیل فضای خالی به تعداد زیادی فضاهای هوایی بسیار کوچک کم می‌کند. فضاهای هوایی کوچک حرکت هوا را کاهش داده و جریان همرفت را به حداقل می‌رساند تا از توان عایق‌کاری هوای ساکن استفاده شود. به طور کلی اثربخشی یک فرآورده‌ عایق‌کاری حرارتی به نوع مصالح و در نتیجه ضریب هدایت حرارتی، چگالی و ضخامت آن بستگی دارد. این موارد باید همراه با سایر مشخصات لازم از جمله شماره استاندارد ویژگی فرآورده‌ مربوط، مقاومت‌های مکانیکی و خواص انتقال بخار آب روی برچسب فرآورده‌ عایق‌کاری حرارتی ثبت شود. چند نوع عایق حرارتی تجاری برای دستیابی به مقاومت حرارتی مورد نیاز در دسترس است. انواع اصلی عایق‌های موجود در کشور پشم شیشه، پشم سنگ، پشم سرباره، پلی استایرن منبسط، فوم پلی یورتان صلب و فرآورده‌های پرلیت منبسط است. سایر عایق‌های رایج در کشورهای صنعتی عبارتند از: فرآورده‌های فوم فنولیک، فرآورده‌های پشم و الیاف چوب، فرآورده‌های پشم و پنبه و فرآورده‌های شیشه سلولی. در استاندارد اروپا (EN) برای فرآورده‌های عایقکاری زیر استاندارد ویژگی جداگانه وجود دارد: فرآورده‌های پشم معدنی مصنوعی، فرآورده‌های پلی استایرن منبسط ساخته شده در کارخانه فرآورده‌های فوم پلی استایرن اکسترود شده ساخته شده در کارخانه فرآورده‌های فوم پلی یورتان صلب ساخته شده در کارخانه فرآورده‌های فوم فنولیک ساخته شده در کارخانه فرآورده‌های پشم چوب ساخته شده در کارخانه فرآورده‌های پرلیت منبسط ساخته شده در کارخانه فرآورده‌های الیاف چوب ساخته شده در کارخانه فرآورده‌های پشم پنبه ساخته شده در کارخانه فرآورده‌های شیشه سلولی ساخته شده در کارخانه انواع مصالح و فرآورده‌ عایق حرارتی شرح داده شده در زیر به عنوان جایگزین برای انواع متداول آنها مطرح شده است: پشم شیشه جدید بعضی از تولیدکنندگان اخیرا فرآورده‌های عایقکاری نوار پشم شیشه با چگالی متوسط و زیاد تولید می‌کنند که مقاومت حرارتی آنها قدری بیشتر از انواع قدیمی است. فرآورده‌های سنگین‌تر برای قسمت‌های عایقکاری با فضای خالی محدود مورد نظرند. یکی از تولیدکنندگان، یک محصول عایق الیافی غیرسنتی را بازاریابی می‌کند. این محصول ترکیبی از دو نوع شیشه است که با هم ذوب می‌شوند. همان طور که دو ماده در طی تولید سرد می‌شوند پیچ و تاب‌های اتفاقی مواد را به وجود می‌آورند. این باعث می‌شود که مواد، تحریک پوستی کمتری ایجاد کند. این محصول نیازی به چسباننده شیمیایی برای چسباندن الیاف به هم ندارد. همچنین در یک روکش استوانه‌ای پلاستیکی سوراخ‌دار عرضه می‌شود که حمل و نقل را آسان می‌سازد. انواع مختلفی از پشم شیشه فله‌ای نیز وجود دارد که برای استفاده با دستگاه‌های دمنده عایق در نظر گرفته شده‌اند. بعضی تولیدکنندگان ادعا می‌کنند که مواد بازیافتی بیشتری به کار می‌برند تا بتوانند در رقابت با تولید‌کنندگان دیگر پیشی گیرند. با این وجود، همه آنها عملکرد حرارتی مشابهی دارند. یکی از انواع اصلی «در پتو دمیده» نام دارد. این شبیه به نوع سلولزی «اسپری _ تر» است که در آن ماده با یک چسبنده لاتکس مخلوط می‌شود، با آب کمی‌ تر می‌شود تا چسب فعال شود. سپس آن را به داخل فضای خالی می‌دمند، آزمایش‌ها نشان داده‌اند که دیوارهای عایقکاری شده با سیستم BIB بسیار بهتر از انواع عایق پشم شیشه (مانند عایق‌نواری) پر می‌شوند. پشم معدنی واژه پشم معدنی به سه نوع عایق که از اساس یکسان‌اند، گفته می‌شود: پشم شیشه یا فایبرگلاس که از شیشه بازیافتی ساخته می‌شود پشم سنگ که از بازالت که نوعی سنگ آذرین است به دست می‌آید و پشم سرباره که از سرباره ذوب آهن ساخته می‌شود. بیشتر پشم معدنی تولید شده در ایالات متحده پشم سرباره است. اکثر پشم‌های معدنی شکننده و سست هستند. پشم معدنی نیازی به استفاده از مواد شیمیایی اضافی برای آن که در برابر آتش مقاوم شود، ندارد. اخیرا یک شرکت کانادایی شروع به تولید یک محصول معدنی نوع نواری نرم‌تر کرده است. این محصول سنگین‌تر است و با استاندارد دیوار دو جداره مطابقت بیشتری دارد. اتلاف حرارتی همرفت هوا در آن تا



خرید و دانلود  عایق کاری جدید