لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 31
بعضی از کاربردهای قانون دوم ترمودینامیک
در این بخش ما تعداد بیشتری از نتایج قانون دومترمودینامیک را بوسیله محاسبات تغییرات آنتروپی همراه با یک جریان گوناگون آزمایش می کنیم . برای سادگی کار ، ما توجه خود را به یک ترکیب سیستم بسته جلب می کنیم . حالتی که بوسیلة دو متغیر از سه متغیر V و T و P مشخص می شود .
انتخاب متغیرهای مستقل :
ترکیب دو قانون اول و دوم نیازمند این است که تغییرات دیفرانسیلی در انرژی داخلی به صورت زیر باشد .
(1)
معادلة (1) برای هر دو واکنش برگشت پذیر و برگشت ناپذیر درست است زیرا مربوط به توابع حالت S و U و V می باشد . محاسبة ds برای یک جریان برگشت ناپذیر نیازمند این است که ما یک راه برگشت پذیر میان حالتهای ابتدایی و انتهایی پیدا کنیم ، اما ds یک دیفرانسیل واقعی است و رابطه ای که در معادلة (1) عنوان شده ، جریانی است که محیط اطراف خود تبعیت نمیکند. معادلة (1) اینگونه عنوان می کند که تغییر انرژی در یک جریان به طور مشخصی آشکار است هنگامی که تغییر از ، تغییر دادن حجم هنگامی که آنتروپی ثابت است و برعکس متأثر باشد .
سپس برای S ثابت ، شیب U برخلاف V فقط فشار است و برای V ثابت ، شیب U بر خلاف S فقط دما است . سادگی این تفسیر از سرعتهای تغییر U با توجه به تغییرات S و V و با توجه به متغیرهای P ، V ، T ، S و V را به عنوان متغیرهای مستقل طبیعی تابع U معرفی و طبقه بندی می کنیم .
برای هر تابع حالت ترمودینامیکی ، ما متغیرهای طبیعی را مشخص می کنیم . این تفسیر حاللتی را بوجود می آورد برای معرفی کردن یک دگرگونی متغیرها ، مثل جایی که یک تابع y(x) از متغیر مستقل X بازنویسی شده به عنوان یک تابعی که در آن مشتق y(x) نسبت به x یک متغیر مستقل است . چرا یک فرد باید متغیرهای طبیعی یک تابع حالت ترمودینامیکی را پیدا کند ؟
آزمایشات آزمایشگاهی معمولاً در شرایطی انجام می شوند که مقدار T و P ثابت فرض می شود یا گاهی اوقات V و T را ثابت می گیرند . مطمئناً می توان تغییر در U را با توجه به تغییرات در P و T محاسبه کرد یا با توجه به سایر جفت متغیرهای مستقل نیز می توان محاسبه کرد . اگرچه شکلهای منتج بسیار کامل تر از معادله (1) ، به طور حسی ضریب ، ضرب شده در تغییرات متغیرهای مستقل مشتق U با توجه به متغیرهای انتخابی نیستند بلکه آنها ترکیبی هایی از توابع مربوط به خواص سیستم هستند . برای مثال ، انتخاب T و V به عنوان متغیرهای مصتقل برای U می دهد :
(2)
(3)
(4)
از معادلة (1) نتیجه می شود که ، بنابراین ضریب dv در معادله (3) می تواند بر مبنای مقادیر T و V و P بیان شود . سرعت تغییر U با توجه به تغییرات در V بوسیله تراز بین P و مشخص می شود که به آسانی هنگامی که S و V را به عنوان متغیر مستقل
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 20
ترمودینامیک
گرما - دما و دماسنج
فشار
انبساط اجسام
گاز کامل
گرما سنجی و واحدهای آن
گرمای لازم برای تبدیل یخ به آب
تعادل آب و یخ
تعادل آب با بخار آب
فرآیندهای ترمودینامیکی
انرژی درونی
قوانین ترمودینامیک
ماشین های گرمایی
یخچال
گرما
هنگامی که دو جسم با دماهای متفاوت در تماس با یکدیگر قرار گیرند انرژی از
جسم گرمتر به جسم سرد تر میرود به انرژی که در این شرایط منتقل می شود
انرژی گرمایی می گویند
الف - گرما و حرکت مولکولی
میدانید که ماده از مولکولها تشکیل شده است این مولکولها ساکن نیستند بلکه دائما در حال
حرکت هستند نوع حرکت آنها بستگی به حالت ماده دارد یکی از اثرهای گرما بر ماده
این است که حرکت آنها را سرعتر می کند و فاصله مولکول ها را افزایش می دهد در
نتیجه موجب افزایش طول سطح و حجم جامدات و حجم مایعات و گازها می شود
ب - گرما وانرژی درونی
مولکولهای اجسام چون در حرکتند دارای انرژی جنبشی میباشند و چون بین آنها نیروهای
پیوستگی وجود دارد به سبب وضع و حالت خود دارای انرژی پتانسیل نیز هستند
هنگامیکه ماده ای را گرم می کنیم انرژیهای جنبشی و پتانسیل مولکولها هردو افزایش
می یابد مجموع انرژیهای جنبشی وپتانسیل تمام ملکولهای یک ماده را انرژی درونی یا
گرمایی آن ماده مینامند
دما
دما کمیتی است نسبی و مقایسه ای و حالت جسم را نشان می دهد به عبارت دیگر درجه
گرمی جسم را نشان می دهد نه انرژی گرمایی آن را
دماسنجها
دماسنج وسیله اندازه گیری دمای اجسام است که بر اساس انبساط اجسام کار می کنند
مدرج کردن دماسنجها
برای مدرج کردن دماسنجها از دو نقطه ثابت در طبیعت استفاده می شود یکی نقطه پایینی
که معمولا نقطه ذوب یخ یا نقطه انجماد آب خالص در فشار یک اتمسفر بوده و دومی نقطه
بالایی که نقطه جوش آب خالص در فشار یک اتمسفر می باشد
الف - سلسیوس یا سانتیگراد
در این دماسنج نقطه ذوب یخ صفر درجه و نقطه جوش آب صد انتخاب شده است و
فاصله بین صفر وصد به صد قسمت مساوی تقسیم شده است
ب - فارنهایت
نقطه ذوب یخ 32 و نقطه جوش آب 212 انتخاب شده است و فاصله بین به 180 قسمت
مساوی تقسیم شده است
ج - کلوین یا مطلق
نقطه ذوب یخ 273 و نقطه جوش آب 373 و فاصله بین به 100 قسمت مساوی تقسیم
شده است
د - رئومر
نقطه ذوب یخ صفر و نقطه جوش آب 80 درجه و فاصله بین به 80 قسمت مساوی تقسیم
شده است
رابطه دماها در دماسنجهای مختلف
اگر دماسنج سلسیوس دمای جسمی راC ، فارنهایت همان دما را F ، کلوین آن را T
و رئومر R نشان دهد رابطه بین آنها به صورت زیر است
فشار
فشار بزرگی نیرویی است که به طور مودی بر واحد سطح اثر می کند
صفر مطلق
پایین ترین دمای ممکن است که صفر مطلق می نامند در این دما حرکت
مولکولها کاملا متوقف است و انرژی درونی ماده به کمترین مقدار ممکن می رسد رابطه
بین دما کلوین و سلسیوس با توجه به فرمولهای قبل به صورت زیر است
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 38
ترمو دینامیک
مقدمه
ترمودینامیک شاخه ای از علم است که اصول انتقال انرژی را در سیستمهای درشت بین مجسم میکند بند های اصلی که تجربه نشان داده است همة این انتقالات را به کار می گیرند به عنوان قوانین ترمودینامیک شناخته شده اند . این قوانین اولیه و بنیادین هستند و نمی توان آنها را از چیز اصلی تر دیگری مشتق کرد .
اولین قانون ترمودینامیکمی گوید که انرژی باقی می ماند و با اینکه می تواند به شکل دیگر تغییر کند و از مکانی به مکان دیگر تغییر یابد ، مقدار کلی آن ثابت می ماند . بدین ترتیب اولین قانون ترمودینامیک به مفهوم انرژی بستگی دارد ولی از طرف دیگر انرژی تابع اصلی ترمودینامیک است چون بدین وسیله می توان اولین قانون را به صورت فرمول بیان کرد . این همبستگی مشخصة مفاهیم اولیه ترمودینامیک است .
واژه های سیستم و پیرامون به طور مشابه همبسته می شوند . سیستم به شیء، هر کمیت مانده هر بخش و غیره ای اطلاق می شود که برای مطالعه انتخاب شده است و ( به طور ذهنی ) از هر چیز دیگر که پیرامون نامیده می شود جدا می گردد . پوشش مجازی که سیستم را احاطه می کند و آن را از پیرامونش جدا می سازد مرز سیستم نامیده می شود .این مرز تصور می رود خواص ویژه ای داشته باشد که یا ( 1 )سیستم را از پیرامونش جدا می سازد ، یا ( 2 ) به روش های مخصوص فعل و انفعال بین سیستم وپیرامونش مبادله می کند . اگر سیستم تفکیک نشده باشد ، تصور می رود مرزهایش ماده یا انرژی یا هر دو را با پی رامنش مبادله میکند . اگر ماده مبادله شود سیستم گفته می شود باز است . اگر فقط انرژی نه ماده مبادله گردد سیستم بسته ( ولی تفکیک نشده) است و جرمش ثابت است .
وقتی سیستم تفکیک شده است نمی تواند تحت تاثیر پیرامونش قرار گیرد . با وجود این ، ممکن است تغیرات درون سیستم روی دهد که این تغییرات با وسایل اندازه گیری مثل دماسنج ، فشار سنج ، و غیره قابل تشخیص هستند . با وجود این ، چنین تغییراتی نمی توانند بطور نامحدود ادامه یابند ، و بالاخره سیستم باید به وضعیت ثابت نهائی تعدل درونی برسد .
در مورد سیستم بسته که با پیرامونش فعل و انفعالات می کند ، وضعیت ثابت نهایی ، چون سیستم نه تنها از لحاظ درونی در تعادل است ممکن است بالاخره بدست آید .
مفهوم تعادل در ترمودینامیک اصلی است چون با وضعیت تعادل سیستم که مفهوم حالت است ارتباط دارد . سیستم حالت قابل تکرار و همانند دارد وقتی همة خواصش ثابت هستند . مفاهیم حالت و خصوصیت دوباره همبسته می شوند . همچنین شخص میتواند بگوید که خواص سیستم به وسیلة حالتش ثابت هستند . خواص معینی با وسایل اندازه گیری مثل دماسنج و فشار سنج کشف می شوند . وجود خواص دیگر مثل انرژی درونی بیشتر به طور غیر مستقیم شناسایی می شوند . تعداد خواصی که باید ارزشهای دلخواه را به منظور ثابت کردن حالت سیستم تنظیم کنند به سیستم بستگی دارد و باید از طریق آزمایش تعیین شوند .
وقتی سیستم از حالت تعادل خارج می شود و در معرض فرایندی قرار می گیرد که در طی آن خواص سیستم تغییر می کند تا به حالت تعادل جدیدی برسند . سیستم در طی چنین فرایندی ممکن است با پیرامونش فعل و انفعال کند تا این که انرژی رابه شکل گرما و کار مبادله کند و بدین ترتب در سیستم و پیرامونش تغییراتی بوجود آورد که برای یک علت یا علت دیگر مطلوب هستند . فرایندی که ادامه می یابد بطوری که سیستم هرگز به طور متمایز از حالت تعادل خارج نمی شود ، برگش پذی نامیده می شود چون چنین فرایندی بدون اینکه نیازی به افزودن کار ایجاد شده به وسیله فرایند پیشین داشته باشد در آغاز بطور مشابه در جهت مخالف معکوس می شود .
مبنای ترمودینامیک بر تجربه و آزمایش استوار است . تعدادی از اصلهای موضوع به ترتیب زیر بیان شده است :
اصل 1
شکلی از انرژی که بعنوان انرژی درونی شناخته شده است وجود دارد که برای سیستم های در حالت تعادل ، خاصیت ذاتی سیستم تست و از لحاظ کاربردی به مختصات قابل اندازه گیری مربوط می شود که سیستم را متمایز می کنند .
اصل 2
انرژی کلی هر سیستم و پیرامنش باقی می ماند . ( اولین قانون ترمودینامیک ) انرژی درونی کاملآ از انرژی پتانسیل و جنبشی که اشکال خارجی انرژی هستند جدا ست . درکاربرد اولین قانون ترمودینامیک همة اشکال انرژی از جمله انرژی درونی باید در نظر گرفته شوند .
لینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل : .doc ( قابل ویرایش و آماده پرینت )
تعداد صفحه : 23 صفحه
قسمتی از متن .doc :
قوانین ترمودینامیکقانون صفرم ترمودینامیک
در زبان یونانی Thermos به معنای “گرما و حرارت” و Dynamic به معنای “تغییرات” می باشد و لغت Thermodynamic بیانگر شاخه ای از علم فیزیک می باشد که به بررسی رفتار خواص کلی سیستم ها مانند فشار، دما، انرژی داخلی، حجم، آنتروپی و ... می پردازد. از جمله مسایل مورد علاقه این علم می توان به بررسی قوانین حاکم بر تبدیل انرژی گرمایی به کار اشاره. قوانین اصلی حاکم بر این علم بسیار جالب بوده و مصادیق بسیاری در سایر علوم تجربی و نظری نیز دارند سعی خواهیم کرد که طی چند مطلب به تشریح ساده آنها بپردازیم.قانون صفرم (Zeroth law)برای هیچ یک از ما شکی وجود ندارد هنگامی که یک لیوان آب جوش را در یک ظرف بزرگتر آب سرد قرار می دهیم، پس از گذشت زمان لازم دمای آب درون لیوان و آب بیرون آن - درون ظرف بزرگتر - یکسان می شود. اینگونه بنظر می آید که میان دو منبع - منظور لیوان آب جوش و ظرف آب سرد - مفهومی بنام گرما به حرکت در می آید و از جایی که بیشتر است به سمت جایی که کمتر است حرکت می کند تا به تعادل گرمایی برسند.مثال دیگر آنکه هنگامی که یک لیوان آب یخ را بدست میگیرد بوضوح احساس می کنید چیزی - بنام گرما - از دست شما به سمت لیوان جاری می شود و ضمن سرد کردن دست شما به گرم کردن لیوان مشغول می شود. نمونه معکوس حالتی است که شما یک لیوان چای داغ را در درست می گیرد. در هر دو مورد اگر لیوان ها را برای مدت طولانی در دست نگاه داریم دیگر احساس خاصی نخواهیم داشت و دمای لیوان ها با دمای بدن ما یکسان می شود.این نمونه تجربه های به ظاهر ساده مصادیقی از قانون صفرم ترمودینامیک می باشند که معمولآ به اینصورت بیان می شود : “اگر A و B با جسم سومی مانند C در تعادل گرمایی باشند، حتمآ با یکدیگر نیز در تعادل خواهند بود.”دقت کنید که این خاصیت اگر چه بنظر ساده می آید اما در تمام موارد یکسان نیست و حتی شاید به نوعی ابهام هم داشته باشد. بعنوان مثال دلیلی وجود ندارد، اگر آقای A، گربه C را دوست داشته باشد و آقای B هم این گربه را دوست داشته باشد، در آنصورت آقایان A و B به یکدیگر علاقه داشته باشند.قانون صفرم ترمودینامیک در واقع تاکیدی است بر وجود یک کمیت بنام دما که مقدار آن در سیستم های ترمودینامیکی در حال تعادل یکسان می باشد. مشابه این قانون اگرچه در فیزیک الکتریسیته تعریف خاصی شاید نداشته باشد وجود دارد. شما وقتی دو منبع با پتانسیل های مختلف الکتریکی را از طریق یک سیم هادی به یکدیگر متصل کنید و مدار بسته ای تشکیل دهید، جریان الکتریسیته آنقدر در مدار جاری خواهد بود - و تلف خواهد شد - تا پتانسیل دو منبع یکسان شود.علت آنکه این قانون با شماره صفر مشخص می شود آن است که بسیار پایه ای بوده و نیز پس از گذشت سالها اسفتاده از سایر قوانین ترمودینامیک، در اوایل قرن بیستم به جمع قوانین ترمودینامیک پیوسته است.
قانون صفرم ترمودینامیک بیان میکند که اگر دو سیستم با سیستم سومی در حال تعادل گرمایی باشند، با یکدیگر در حال تعادلند.
قانون اول ترمودینامیک
در زبان یونانی Thermos به معنای “گرما و حرارت” و Dynamic به معنای “تغییرات” می باشد و لغت Thermodynamic بیانگر شاخه ای از علم فیزیک می باشد که به بررسی رفتار خواص کلی سیستم ها مانند فشار، دما، انرژی داخلی، حجم، آنتروپی و ... می پردازد. از جمله مسایل مورد علاقه این علم می توان به بررسی قوانین حاکم بر تبدیل انرژی گرمایی به کار اشاره. قوانین اصلی حاکم بر این علم بسیار جالب بوده و مصادیق بسیاری در سایر علوم تجربی و نظری نیز دارند سعی خواهیم کرد که طی چند مطلب به تشریح ساده آنها بپردازیم.قانون صفرم (Zeroth law)برای هیچ یک از ما شکی وجود ندارد هنگامی که یک لیوان آب جوش را در یک ظرف بزرگتر آب سرد قرار می دهیم، پس از گذشت زمان لازم دمای آب درون لیوان و آب بیرون آن - درون ظرف بزرگتر - یکسان می شود. اینگونه بنظر می آید که میان دو منبع - منظور لیوان آب جوش و ظرف آب سرد - مفهومی بنام گرما به حرکت در می آید و از جایی که بیشتر است به سمت جایی که کمتر است حرکت می کند تا به تعادل گرمایی برسند.مثال دیگر آنکه هنگامی که یک لیوان آب یخ را بدست میگیرد بوضوح احساس می کنید چیزی - بنام گرما - از دست شما به سمت لیوان جاری می شود و ضمن سرد کردن دست شما به گرم کردن لیوان مشغول می شود. نمونه معکوس حالتی است که شما یک لیوان چای داغ را در درست می گیرد. در هر دو مورد اگر لیوان ها را برای مدت طولانی در دست نگاه داریم دیگر احساس خاصی نخواهیم داشت و دمای لیوان ها با دمای بدن ما یکسان می شود.این نمونه تجربه های به ظاهر ساده مصادیقی از قانون صفرم ترمودینامیک می باشند که معمولآ به اینصورت بیان می شود : “اگر A و B با جسم سومی مانند C در تعادل گرمایی باشند، حتمآ با یکدیگر نیز در تعادل خواهند بود.”دقت کنید که این خاصیت اگر چه بنظر ساده می آید اما در تمام موارد یکسان نیست و حتی شاید به نوعی ابهام هم داشته باشد. بعنوان مثال دلیلی وجود ندارد، اگر آقای A، گربه C را دوست داشته باشد و آقای B هم این گربه را دوست داشته باشد، در آنصورت آقایان A و B به یکدیگر علاقه داشته باشند.قانون صفرم ترمودینامیک در واقع تاکیدی است بر وجود یک کمیت بنام دما که مقدار آن در سیستم های ترمودینامیکی در حال تعادل یکسان می باشد. مشابه این قانون اگرچه در فیزیک الکتریسیته تعریف خاصی شاید نداشته باشد وجود دارد. شما وقتی دو منبع با پتانسیل های مختلف الکتریکی را از طریق یک سیم هادی به یکدیگر متصل کنید و مدار بسته ای تشکیل دهید، جریان الکتریسیته آنقدر در مدار جاری خواهد بود - و تلف خواهد شد - تا پتانسیل دو منبع یکسان شود.علت آنکه این قانون با شماره صفر مشخص می شود آن است که بسیار پایه ای بوده و نیز پس از گذشت سالها اسفتاده از سایر قوانین ترمودینامیک، در اوایل قرن بیستم به جمع قوانین ترمودینامیک پیوسته است.
قانون اول ترمودینامیک که به عنوان قانون بقای کار و انرژی نیز شناخته میشود، میگوید که حالت تعادل ماکروسکوپی یک سیستم با کمیتی به نام انرژی درونی (U) بیان میشود. انرژی درونی دارای خاصیتی است که برای یک سیستم منزوی (ایزوله) داریم:
U=مقدار ثابت
اگر به سیستم اجازه? برهمکنش با محیط داده شود، سیستم از حالت ماکروسکوپی اولیه? خود به حالت ماکروسکوپی دیگری منتقل میشود که تغییر انرژی درونی را برای این تحول (فرآیند) میتوان به شکل زیر نشان داد:
?U = Q ? W
که در این فرمول W، کار ماکروسکوپی انجام شده توسط سیستم در برابر نیروی خارجی و Q مقدار گرمای جذب شده توسط سیستم در طی این فرآیند است.
نمادگذاری
شمیی و فیزیک
چون در شیمی و فیزیک سیستم مورد توجه است، گرما و کاری که به سیمتم داده میشود مورد نظر ماست و انرژی درونی را Q+W در نظر میگیریم.(سیستم را بسته,در حالت سکون و در غیاب میداانها در نظر میگیریم)
,
where
dU یک افزایش بیاندازه کوچک در انرژی درونی سیستم است.,
?Q یک مقدار بیاندازه کوچک از گرما که به سیستم افزوده میشود,
?W یک کار بیاندازه کوچک که بر روی سیستم انجام میشود و
? نماد دیفرانسیل است.
قوانین فیزیک چه محدودیتهایی بر عملکرد ماشین های بخار و سایر ماشین های تولید کننده انرژی مکانیکی تحمیل میکنند. ترمودینامیک درباره تبدیل یک شکل انرژی به شکلی دیگر، به ویژه تبدیل گرما به سایر شکلهای انرژی بحث میکند. این کار با مطالعه روابط بین پارامترهای صرفا ماکروسکوپی صورت میگیرد که رفتار سیستمهای فیزیکی را توصیف میکنند. این گونه توصیف ماکروسکوپی (و در مقیاس بزرگ)، لزوما تا حدی خام است، چرا که همه جزئیات کوچک مقیاس و میکروسکوپی را نادیده میگیرد. اما در کاربردهای عملی، این جزئیات اغلب مهم نیستند. برای مثال، مهندسی که رفتارهای گازهای حاصل از احتراق را در سیلندر یک موتور اتومبیل بررسی میکند میتواند با کمیتهای ماکروسکوپی همچون دما، فشار، چگالی و ظرفیت حرارتی کار خود را پیش ببرد.در واقع دانشمندان به دنبال یافتن پاسخ این پرسش بودند که آیا میتوان ماشینی به طور دائمی کار مکانیکی انجام دهد. آنها مدتها بر روی این موضوع تحقیق کردند و تعدادی از محققین نیز طرحهایی برای این کار پیشنهاد نمودند. شکل زیر یکی از این طرحها را نشان میدهد. هدف این بود که ابزار ساخته شده بدون مصرف هیچ گونه سوخت یا هر گونه انرژی ورودی دیگر، کار خروجی بی پایانی را تامین کند. در شکل میله های کوتاه لولا شده، که به میخها تکیه دارند، وزنهها را به چرخ متصل میکنند. وقتی میلهها در وضعیت نشان داده شده هستند، عدم توازنی در توزیع وزن وجود دارد که موجب ایجاد یک گشتاور ساعتگرد خواهد شد که چرخ را در جهت نشان داده شده میچرخاند. طراح میپنداشت این گشتاور همیشگی است و نه تنها چرخش چرخ را حفظ میکند، بلکه به طور دائمی به محور آن انرژی میدهد. اما آنچه در عمل اتفاق میافتد اینست که پس از یک دور چرخیدن، جرمها در یک وضعیت متعادل باقی میمانند و حرکت متوقف میشود.
در این راه کوششهای فراوانی صورت گرفت؛ در شکلهای زیر میتوانید نمونه هایی از طرحهای پیشنهادی را ببینید.
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 39
مقدمه :
اساسی ترین کاربرد ترمودینامیک در متالوژی فیزیکی پیش بینی حالت تعادل برای یک آلیاژ است .
در بررسی های مربوط به دگرگونی های فازی ما همیشه با تغییر سیستم به سمت تعادل روبه رو هستیم. بنابراین ترمودینامیک به صورت یک ابزار بسیار سودمند می تواند عمل کند. باید توجه داشت که ترمودینامیک به تنهایی نمی تواند سرعت رسیدن به حالت تعادل را تعیین کند .
1-تعادل :
یک فاز به عنوان بخشی از یک سیستم تعریف می شود که دارای خصوصیات و ترکیب شیمیایی یکنواخت و همگنی بوده و از نظر فیزیکی از دیگر بخشهای سیستم جداشدنی است . اجزای تشکیل دهنده یک سیستم خاص عناصر مختلف یا ترکیب های شیمیایی است که سیستم را بوجود می آورد و ترکیب شیمیایی یک فاز یا یک سیستم را می توان با مشخص کردن مقدار نسبی هر جزء تشکیل دهنده تعیین کرد .
به طور کلی دلیل رخداد یک دگرگونی این است که حالت اولیه یک آلیاژ نسبت به حالت نهایی ناپایدارتر است اما پایداری یک فاز چگونه تعیین می شود ؟ این پرسش به وسیله ترمودینامیک پاسخ داده می شود . برای دگرگونی هایی که در دما و فشار ثابت رخ می دهد پایداری نسبی یک سیستم از انرژی آزاد گیبس G آن سیستم مشخص می شود .
انرژی آزاد گیبس یک سیستم به صورت زیر تعریف می شود :
( 1-1 ) G=H-TS
که H آنتالپی T دمای مطلق و S آنتروپی سیستم است . آنتالپی میزان گنجایش حرارتی سیستم مورد نظر است و به وسیله رابطه زیر بیان می شود.
( 2-1 ) H=E+PV
که E انرژی درونی سیستم P فشار و V حجم سیستم است . انرژی درونی مجموع انرژی های پتانسیل و جنبشی اتم های درون یک سیستم است. در جامدات انرژی جنبشی تنها ناشی از حرکت ارتعاشی اتم ها است در حالی که در مایعات و گاز ها انرژی جنبشی افزون بر حرکت ارتعاشی اتم ها انرژی انتقالی و انرژی دورانی اتم ها و مولکول ها و گاز ها انرژی جنبشی افزون بر حرکت ارتعاشی اتم ها انرژی انتقالی و انرژی دورانی اتم ها و مولکول های داخل یک مایع یا گاز را نیز در برمیگیرد . انرژی پتانسیل نیز بر اثر اندرکنش ها یا پیوند بین اتم های درون یک سیستم به وجود می آید . هنگامی که یک دگرگونی یا واکنش رخ می دهد حرارت جذب شده یا حرارت آزاد شده به تغییرات در انرژی درونی سیستم ارتباط پیدا می کند اما تغییرات حرارت تابعی از تغییر حجم سیستم نیز بوده و عبارت PV نمایانگر این موضوع است بنابراین در فشار ثابت تغییرات H نشانگر حرارت جذب شده یا آزاد شده است.
هنگامی که یک فاز متراکم (جامد یا مایع) را بررسی می کنیم و عبارت PV در مقایسه با E مقدار بسیار کوچکی است که آن را نادیده می گیرند و .
عبارت دیگری که در رابطه مربوط به G پدیدار می شود آنتروپی ( S ) بوده که بیانگر میزان بی نظمی سیستم است .
هنگامی یک سیستم را در ( حالت ) تعادل می دانند که در پایدارترین حالت خود قرار گرفته باشد یعنی با گذشت زمان هیچ تغییری در سیستم ایجاد نشود . یک نتیجه مهم از قوانین ترمودینامیک کلاسیک این است که در دما و فشار ثابت یک سیستم بسته ( یعنی سیستمی که جرم و ترکیب شیمیایی آن ثابت است ) هنگامی در تعادل پایدار قرار دارد که انرژی آزاد گیپس آن کمترین مقدار ممکن را داشته باشد یا به شکل ریاضی :
( 3-1 ) dG=O
با توجه به تعریف G ( معادله 1-1 ) ملاحظه می شود که پایدارترین حالت هنگامی رخ می دهد که سیستم کمترین آنتالپی و بیشترین آنتروپی را دارا باشد . بنابراین در دماهای پایین فازهای جامد پایدارتر است چون قویترین اتصال بین اتمی را داشته بنابراین کمترین انرژی درونی ( آنتالپی ) را دارد . در دماهای بالا چون عبارت TS - عبارت غالب است بنابراین فازهایی با بی نظمی بیشتر همچون مایعات و گازها که اتم های آنها به آسانی حرکت کرده و جابه جا می شود پایدارتر است .
تعادل که به وسیله معادله 3-1 تعریف می شود را می توان به صورت ترسیمی نیز نشان داد . اگر انرژی آزاد تمام حالت های فرضی ممکن یک سیستم را محاسبه کنیم آرایش پایدار حالتی خواهد بود که انرژی آزاد آن کمترین مقدار است . این موضوع در شکل یک نشان داده شده است و با این فرض که انرژی مربوط به هر یک از آرایش های اتمی مختلف به صورت نقطه ای روی منحنی موجود قرار می گیرد آرایش یا نظم A نشانگر وجود تعادل پایدار است . در این نقطه تغییرات کوچک در ترتیب اتم ها با یک تقریب مرتبه اول تغییری در G ایجاد نمی کند یعنی معادله 3-1 برقرار است . اگر چه همیشه آرایش ها و نظم های دیگری مانند B وجود دارد که در آن نقاط انرژی آزاد به طور موضعی کمینه است و معادله 3-1 را نیز تصدیق می کند ولی کمترین مقدار ممکن G را ندارد . چنین حالت ها یا آرایش هایی را به منظور جدا کردن از حالت پایدار حالت تعادل نیمه پایدار می نامند . حالت های میانی که را حالت ناپایدار می نامند و فقط در کارهای عملی و به طور لحظه ای هنگام انتقال از یک حالت پایدار به حالت دیگر به وجود می آید . اگر بر اثر نوسان های دمایی اتم ها یک نظم یا آرایش حالت میانی بیاید این نظم بسرعت تغییر می کند و اتم ها دوباره نظم یکی از حالت های دارای انرژی آزاد کمینه را به خود می گیرند . اگر بواسطه تغییری در دما یا فشار برای مثال یک سیستم از حالت پایدار به حالت نیمه پایدار حرکت کند با گذشت زمان سیستم به حالت تعادل پایدار جدیدی تغییر حالت می دهد .
شکل یک : تغییرات شماتیک انرژی آزاد گیبس نسبت به نظم و وضعیت اتمها . آرایش یا نظم A کمترین انرژی آزاد را دارد . بنابراین هنگامی که سیستم در تعادل پایدار است دارای چنین نظمی خواهد بود . آرایش B یک تعادل نیمه پایدار است .
بر اساس قوانین ترمودینامیک هر دگرگونی که به کاهش انرژی آزاد سیستم می انجامد امکان پذیر است . بنابراین یک معیار یا ملاک لازم برای هر