زی زی فایل

دانلود فایل

زی زی فایل

دانلود فایل

ژنتیک (2)

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 29

 

فهرست مطالب

عنوان صفحه

انگور 1

کوجه فرنگی 2

یونجه 4

ذرت 6

چغندرقند 7

مرکبات 9

گلهای زینتی 10

اصلاح نباتات : 14

مهندسی ژنتیک گیاهی: 22

BANANA 23

انگور

انگور با انواع خاکها خود را تطبیق داده و عناصر غذایی مورد نیاز آن نسبت به سایر محصولات باغبانی کمتر است اما کمبود هر کدام از آنها حتی به مقدار کم نیز تاثیر زیادی بر کیفیت و کمیت محصول خواهد داشت .

تاثیر عناصر مختلف بر انگور و علایم کمبود آنها:

زت(N): باعث افزایش رشد شده و علائم کمبود آن تا زمانی که خیلی شدید نباشد به آسانی قابل تشخیص نیست . ولی در کمبودهای شدید برگها کم رنگ و مایل به زرد شده ورشد شاخه ها کاهش می یابد .

فسفر(P): در تبدیل قند به نشاسته نقش داشته ولی کمبود آن در تاکستانها شایع نیست .علائم کمبود بستگی به واریته آن دارد(شکل1و4).

پتاسیم(K): باعث بهبود کیفیت انگور شده از نرم شدگی و لهیدگی و ریزش پیش از موعد حبه ها جلوگیری نموده و مانع رسیدگی ناهماهنگ آنها می گردد .علائم کمبود آن در قسمت میانی ساقه ها دیده می شود . حاشیه برگها کلروز شده حبه ها ریز می ماند و قسمت پایین خوشه متلاشی و خشک می گردد و حبه ها کشمش مانند می شوند .(شکل2)

روی(Zn):از ریزش حبه ها چلوگیری نموده و به ساخت هورمون اکسین کمک می کند در صورت کمبود. محل اتصال دمبرگ به پهنک توسعه نیافته و باریک می ماند. گیاه دچار کمبود اکسین شده و رشد آن مختل می گردد. حبه ها نا رس باقی مانده و شروع به ریزش می کنند.

منکنز(Mn): نقش آن مشارکت در سیستم های آنزیمی و تولید کلروفیل است. علائم کمبود معمولا تا سه هفته پس از گلدهی ظاهر شده و این علائم با زرد شدن بین رگبرگها آغاز می گردد و اغلب در برگهای جوان دیده می شود.(شکل3)

بر(B): این عناصر در فعالیتهای حیاتی گیاه نقش عمده ای داشته. باعث ساخت پکتین شده و مقاومت گیاه را نسبت به سرما و بیماریها افزایش میدهد و به رشد ریشه نیز کمک می کند. در صورت کمبود اختلالاتی در رشد و نمو دانه گرده به وجود می آید که میزان محصول را به شدت کاهش می دهد. علائم کمبود بر در انگور به آسانی قابل تشخیص است. به طوری که بوته های با کمبود شدید. میوه نداشته و برخی از خوشه ها سوخته و خشک می شوند و فقط ساقه خوشه همراه با چند حبه باقی می ماند.

کوجه فرنگی

مقدار عناصر مصرفی سبزیجات به طور متوسط بیش از اکثر محصولات دیگر است و 80 درصد آن در طی 2 تا 3 ماه در اختیار گیاه باید قرار بگیرد . گوجه فرنگی از محصولاتی است که ضمن نیاز به کودهای اصلی به کود میکرو نیز احتیاج دارد .

تاثیر عناصر مختلف بر گوجه فرنگی و علائم کمبود آنها :

 ازت (N) : باعث افزایش رشد رویشی شده و در نهایت در تولید گل و میوه بیشتر موثر می باشد ، کمبود این عنصر در گوجه فرنگی باعث به تأخیر افتادن رشد ، تغییر رنگ طبیعی گیاه ، کوچک و نازک باقی ماندن برگها و تغییر رنگ آنها از سبز مایل به زرد به ارغوانی ، سفت و فیبری شدن شاخه ها ، زرد شدن جوانه های گل و ریختن آنها ، کوچک ماندن میوه و کاهش شدید محصول می شود .

فسفر (p)  : نقش اصلی این عنصر در تنظیم زمان رسیدگی محصول می باشد همچنین باعث افزایش مقاومت گیاه در برابر بیماری ها شده و در بهبود کیفیت و ظاهر میوه نقش مهمی دارد . اولین علامت کمبود فسفر در گوجه فرنگی ایجاد رنگ ارغوانی در سطح زیرین برگها می باشد . بعد از آن شاخه ها باریک و فیبری شده ، دمبرگها کوچک و میوه دهی به تاخیر می افتد .

پتاسیم (k) : باعث افزایش مقامت گیاه در برابر تنش های مختلف محیطی شده و در بهبود کیفیت گوجه فرنگی مؤثر است . در صورت کمبود این عنصر ، گوجه فرنگی آهسته تر رشد می کندو رنگ آن سبز مایل به آبی تیره یم شود . برگهای جوان کاملا چروکیده و قسمتهایی که تحت تذثیر کمبود قرار گرفته اند گاهی به رنگ نارجی براق درآمده و اغلب شکننده و قهوه ای شده و بالاخره می میرند . شاخه ها سخت و چوبی شده ، ریشه ها خوب رشد نکرده و اغلب باریک باقی می مانند .

بر (B) :‌نقش عمده ای در فعالیتهای حیاتی گیاه داشته و تقسیم سلولی بافتهای مریستمی ، تشکیل جوانه های برگ و گل ، ترمیم بافتهای آوندی و در نقل و انتقال مواد محلول در بین سلولها نقش مهمی ایفا می کند . در صورت کمبود ، میوه ها لکه لکه شده و نقاط چوب پنبه ای روی میوه ظاهر شده وباعث رسیدگی بی موقع محصول می شود .

آهن (Fe) : این عنصر در ساختن سبزینه گیاه دخالت دارد و علائم کمبود آن در بوته گوجه فرنگی به صورت زرد شدن بین رگبرگی برگها است که البته خود رگبرگها سبز باقی می ماند . زرد شدن از قاعده برگچه ها شروع و به سمت نوک گسترش می یابد . و به طور کلی کمی خشک و سوخته می شوند .

منگنز (Mn) : این عنصر فعال کننده آنزیمهای مختلف است و باعث تسریع جوانه زنی و رسیدگی میوه می شود و در صورت کمبود ، برگها به تدریج زرد شده و حالت سوختگی به خود می گیرند . گیاه به شکل باریک و دراز



خرید و دانلود  ژنتیک (2)


تحقیق درباره تکنیک های ژنتیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 64

 

بسمه تعالی:

مبنای تکنیک های ژنتیک

تکنیکهای فنی ژنتیکی بعد از شناسایی کامل DNA از سال 1953 آغاز شد بعد با کشف حکم مرکزی در سال 1958 توسط فرانسیس کریک اتفاق اتفاد. ژنتیک وارد مسیری تازه شد که هدف آن درک پنج الگوی رفتاری سلولی رشد تقسیم تمایز، حرکت و میانکش است.

میزان پیشرفت در این زمینه باعث بهت و حیرت و حتی خوپش بین ترین دانشمندان باشد بطور روزانه کشفیات بدست آمده از آزمایشگاههای تحقیقاتی خبر از شناسایی ژن های جدید عامل بیماری ها یا محصولات بیوتکنولوژی نوید بخش می دهند اکثر کشفیات مهم ژنتیکی با استفاده از ساده ترین موجودات ( ویرو ها ، باکتری ها) بدست آمده اند اگر چه امروزه یافته های جدید در مورد گیاهان و پستانداران نیز ارائه شده است. اگر چه باکتری ها و باکتریوفاژ ها هنوز هم پیچیده هستند اما نسبت به سلولهای جانوری و گیاهی سیستم ساده تری دارند، با استفاده از این سیستم های ساده بود که دانشمندان توانستند DNA را بعنوان مولکول حاوی اطلاعات ژنتیکی یک سلول معرفی کنند.

DNA در سال 1869 توسط میکشن در اسپرم ماهی شناسایی شد ولی عملکرد و اهمیت آن در سلول به عنوان مسئول صفات توارثتا قرن اخیر نا شناخته ماند ساختار فیزیکوشیمیایی DNA توسط واتسون و کریک بدست آمد .

با فاصله زمانی کوتاه بعد ازشناسایی DNA ساختار DNA شناخته شد که به عنوان ماکرو مولکول حد واسط مهم در نستز آنزیمها و سایر پروتئین ها عمل می کند.

بدنبال این کشفیات شاخه جدید بنام ژنتیک مولکولی در اواخر دهه 1950 و اوایل دهه 1960 بوجود آمد که مفاهیم جدید را معرفی کرد موفقیت های اولیه و تجمع مقدار انبوه اطلاعات دانشمندان را قادر ساخت تا تکنیک های قوی و روش های منطقی را برای موضوعات گوناگون ژنتیک مولکولی و عملکرد عصب، عضله- عملکرد آنتی بیوتیک... ) ارائه دهند.

اعتقاد به یک شکل ذاتی فرآیند های زیستی یک فاکتور مهم در زمینه رشد سریع شاخه ژنتیک مولکولی بر دانشمندان معتقد هستند که ساختار اصول بیولوژیکی که فعالیت ارگانیسم های ساده را هدایت می کند در مورد سلول های پیچیده نیز صادق هستند و فقط در یک سری جزئیات تفاوت دارند که این نظریه با یک سری نتایج آزمایشگاهی بدست آمده نیز مورد تائید قرار گرفت.

ساختار DNA:

ساختمان DNA پلی است که از تعداد زیادی نوکلئوتید ساخته شده فرق نوکلوئید ها در بازنیتروژن داراست دانشمندی به نام Charaff با امکانات ساده مقدار G,A . C,T را در موجودات مختلف استخراج کرد و مقدار نسبی آن را حساب کرد و نتایجی گرفت. دیدار همه DNA های دو رشته ای و همواره است.

خانم فرانکلین و ویل کین DNA را استخراج کرده و از طریق اشعه x‌متوجه شدند DNA دو رشته ای است اما سرانجام Watson و crick در سال 1953 مدل DNA را ارائه دادند و گفتند که مولکول DNA مولکولی دو رشته ای است و مارپیچ Doulde Helix علت مارپیچ DNA است و جفت نوکلئوید ها با هم زاویه دارند.

اندازه زاویه هر جفت را 36 محاسبه کردند و اثبات کردند که در هر 10 نوکلئوتید وجود دارد طول هر DNA A 34 درجه هر چفت باز nm 0.34 در نتیجه زاویه های وپیچ ها دارای شیار بزرگ و کوچک است به آن قسمتی از DNA است که اگر ازبیرون به آن بنگریم جفت نوکلئوتیدها را می بینیم این شیارها محل اتصال هستند این شیار به وسیله پروتئین هایی به آنها متصلند نقش مهمی در میان ژن ها دارند.

علت ایجاد شیار:

نیروهای موجود در DNA از نوع هیدروژنی ، هیدروفوب DNA به فرمهای B,Z,A وجود دارد. فرم A در سلول وجود ندارد و از آبگیری B- DNA بدست می آیند در یک A- DNA در هر دور بجای 10 تانوکلئوتید وجود دارد و قطری بجای 23A-20A درجه است مثل B- DNA راست گرد زاویه حدود 34 است در اینجا هم شیار بزرگ و کوچک وجود دارد.

ما در سلول هیرید RNA- DNA را مشابه A- DNA داریم.

فرم B- DNA همان فرم است که واتسون و کریک شرح دادند و فرم شایع DNA در سلول است اما فرم 2 در مناطقی از DNA تشکیل می شود که G-C فراوان دارند خیلی باریک است قطر 18A است و در هر دو جفت نوکلئوتید دارند و تنها DNA چپ گرد است و فقط شیار کوچک دارد و طرف دیگر صاف است در طول هر دو 45A است.

فرم های D,E,C هم فقط در شرایط آزمایشگاه ساخته شده اند.

فرم DNA:

DNAبصورت حلقوی – خطی تک رشته ای و دو رشته ای مارپیچ وجود دارد. رشته الگوی آن Coding نام دارد و رشته دیگر Non coding نام دارد.

وقتی در DNA تعداد دورها با تعداد دفعات که یک رشته DNA و RNA دیگر را قطع می کند مساوی باشد یعنی در حقیقت DNA بر روی DNA باشد نه رشته بر روی رشته حالت supyeoil داریم حالت چپ گرد سوپرکویل به فرم فعال DNA نزدیک است در تکنیک های جدیدی از آنزیم های توپوایز که در تبدیل حالات سوپر کویل از چپ به راست یا حالت خنثی استفاده می کنند.

دسته بندی DNA

فشرده کردن DNA در فضاهای کوچکتر از خود DNA بسته بندی DNA می گویند که دریوکاریوتها اهمیت بیشتری دارد.

در این کار بوسیله پروفین هایی انجام می شود. پروتن های هیستون که شدیدا قلیایی هستند (لیزین و آرژنین زیاد دارند) در این کار نقش عمده ای دارند این پروتین ها شامل Hn , H3 ,H2B ,H2A, H1 هستند مولکولها ی حفظ شده در تمام گونه ها هستند که در مقابل موتاسیون ها ازبین نرفته اند و این دلیل بر حساسیت کار آنها است و در نهایت کار بسته بندی DNA شکل کروموزوم بوجود می آید که در مرحله مستافاز بهترین فشردگی دیده می شود.

یا غلظت نمک کم ساختمانی دیده می شود که قطر آن 10nm است و شبیه گردن بند تسبیح مانند است و // که بین دانه های تسبح قرار دارند را می توان DNA هضم کرد پی برد که اینکه DNA است دانه ای روی گردنبند را نوکلئورد گویند که دارای پروتئین های هیستون است. در غلظت نمک بال گردنبند یک شکل پیچیده به نام سولئوئید به خود می گیرد که قطر آن 30nm است و بعد از حالت سلنوتندی کروموزوم در نتیجه پیچش بیشتر رخ مید هد.

توالی های DNA:



خرید و دانلود تحقیق درباره تکنیک های ژنتیک


دانلود تحقیق تاریخچه علم ژنتیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 49

 

علم ژنتیک

تاریخچه علم ژنتیک

به عنوان مقدمه

دانش زیست شناسی یکی از قدیمی ترین علومی بوده که بشر به آن توجه داشته است. شواهد بسیار زیادی که طی کاوشهای باستان شناسی بدست آمده حکایت از آن دارد که انسانهای پیشین به دانش زیست شناسی توجه داشته اند و در این میان اصلاح نژاد دامها و پرورش گیاهان با باردهی بیشتر از دانش گذشتگان در مورد علم ژنتیک خبر می دهد. اما از حدود یک قرن پیش دانش زیست شناسی وارد مرحله جدیدی شد که بعدا آن را ژنتیک نامیده اند و این امر انقلابی در علم زیست شناسی به وجود آورد. در قرن هجدهم ، عده ای از پژوهشگران بر آن شدند که نحوه انتقال صفات ارثی را از نسلی به نسل دیگر بررسی کنند؛ این بررسی ها به نتیجه قابل ملاحضه ای ختم نشد. دو دلیل مهم آن عبارت بودند از آگاهی نداشتن به ریاضیات و دلیل دوم انتخاب صفاتی بود که برای پژوهش های اولیه ژنتیک مناسب نبودند.اولین کسی که توانست قوانین حاکم بر انتقال صفات ارثی را شناسایی کند، کشیشی اتریشی به نام گریگور مندل بود که در سال 1865 این قوانین را که حاصل آزمایشاتش روی گیاه نخود فرنگی بود، ارائه کرد. این در حالی بودکه جامعه علمی آن دوران به دیدگاه ها و کشفیات او اهمیت چندانی نداد و نتایج کارهای مندل به دست فراموشی سپرده شد. و به نظر می رسید ، پرونده این دانش رو به بسته شدن است. در سال 1900 میلادی کشف مجدد قوانین ارائه شده از سوی مندل ، توسط درویس ، شرماک و کورنز باعث شد که نظریات او مورد توجه و قبول قرار گرفته و مندل به عنوان پدر علم ژنتیک شناخته شود.

در سال 1953 با کشف ساختمان جایگاه ژنها (DNA) از سوی جیمز واتسن و فرانسیس کریک ، رشته ای جدید در علم زیست شناسی به وجود آمد که زیست شناسی ملکولی نام گرفت . با حدود گذشت یک قرن از کشفیات مندل در خلال سالهای 1971 و 1973 در رشته زیست شناسی ملکولی و ژنتیک که اولی به بررسی ساختمان و مکانیسم عمل ژنها و دومی به بررسی بیماری های ژنتیک و پیدا کردن درمانی برای آنها می پرداخت ، ادغام شدند و رشته ای به نام مهندسی ژنتیک را به وجود آوردند که طی اندک زمانی توانست رشته های مختلفی اعم از پزشکی ، صنعت و کشاورزی را تحت الشعاع خود قرار دهد و دیدگاه های مختلف عصر حاضر را به خود اختصاص دهد.

اساس مهندسی ژنتیک و بیوتکنولوژی انتقال یک یا تعدادی از ژنهای یک ارگانیسم به درون خزانه ژنتیکی یک ارگانیسم دیگر است. به این ترتیب ارگانیسم جدید واجد ژنهایی خواهد شد که در گذشته فاقد آن بوده و اینک وادار می شود که در شرایط محیطی مناسب اقدام به بیان آن ژن نماید که محصول آن می تواند منجر به بروز صفت خاص و یا تولید فراورده ای شود.

مهندسی ژنتیک و بیوتکنولوژی در چند سال اخیر توانسته منشأ خدمات ارزنده ای برای نوع بشر باشد. از مهمترین دستاوردهای این دانش می توان تأثیر آن را حیطه های مختلف از جمله صلاح نژادی حیوانات و گیاهان با هدف تولید فراورده های بیشتر، تهیه داروها و هورمون ها با درجه خلوص بالا و صرف هزینه های پایین ، درمان بیماری های ژنتیکی با ایجاد تغییرات در سلول تخم و موار متعدد دیگر اشاره کرد. تشخیص قبل از بارداری بیماری های ژنتیکی ، تشخیص صحت رابطه فرزند با پدر و مادر و همچنین تکنیک شناسایی مجرمان از روی بقایای باقی مانده از بدن ، مو و یا خون آنها از جمله توانایی های دیگر ژنتیک مولکولی است.در نگاهی دیگر دورنمای دانش ژنتیک و بیوتکنولوژی بسیار زیبا جلوه می کند. تولید اعضای بدن از قلب گرفته تا چشم و دست و پا به صورت مجزا از طریق مهندسی ژنتیک و ارایه آنها به بانکهای اعضای بدن با هدف کمک به نیازمندان پیوند عضو ، یکی از این موارد است. به این ترتیب مشکل دفع پیوند حل خواهد شد و مخصوصاً در صورتی که عضو پیوندی از دارای خزانه ژنتیک همان فرد باشد هیچ آنتی ژن بیگانه ای نمیتواند عامل دفع عضو باشد. درمان بسیاری از بیماری های ژنتیکی مخصوصاً در دوره جنینی قابل درمان خواهد بود. هویت افراد از روی کارتهای شناسایی که بر پایه وراثت و ژنتیک آنها عمل می کند ممکن خواهد شد و مجرمان با گذاشتن کوچکترین اثر بیولوژیکی از خود مثل یک تار مو بسرعت شناسایی خواهند شد. دنیای آینده در تسخیر دانش ژنتیک خواهد بود و برای این علم نمیتوان پایانی قائل شد. اگر چه به نظر می رسد مثل هر دانش دیگری، این علم هم می تواند ابزاری برای ارضاء حس قدرت طلبی بسیاری از سیاستمداران باشد و تا کنون شاهد جنجالهای بسیاری زیادی هم در این مورد بوده ایم. یکی از مهمترین موارد آن تولید گیاهان تراریخت و کلونینگ و همسانه سازی انسان بوده



خرید و دانلود دانلود تحقیق تاریخچه علم ژنتیک


تحقیق: تاریخچه علم ژنتیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 49

 

علم ژنتیک

تاریخچه علم ژنتیک

به عنوان مقدمه

دانش زیست شناسی یکی از قدیمی ترین علومی بوده که بشر به آن توجه داشته است. شواهد بسیار زیادی که طی کاوشهای باستان شناسی بدست آمده حکایت از آن دارد که انسانهای پیشین به دانش زیست شناسی توجه داشته اند و در این میان اصلاح نژاد دامها و پرورش گیاهان با باردهی بیشتر از دانش گذشتگان در مورد علم ژنتیک خبر می دهد. اما از حدود یک قرن پیش دانش زیست شناسی وارد مرحله جدیدی شد که بعدا آن را ژنتیک نامیده اند و این امر انقلابی در علم زیست شناسی به وجود آورد. در قرن هجدهم ، عده ای از پژوهشگران بر آن شدند که نحوه انتقال صفات ارثی را از نسلی به نسل دیگر بررسی کنند؛ این بررسی ها به نتیجه قابل ملاحضه ای ختم نشد. دو دلیل مهم آن عبارت بودند از آگاهی نداشتن به ریاضیات و دلیل دوم انتخاب صفاتی بود که برای پژوهش های اولیه ژنتیک مناسب نبودند.اولین کسی که توانست قوانین حاکم بر انتقال صفات ارثی را شناسایی کند، کشیشی اتریشی به نام گریگور مندل بود که در سال 1865 این قوانین را که حاصل آزمایشاتش روی گیاه نخود فرنگی بود، ارائه کرد. این در حالی بودکه جامعه علمی آن دوران به دیدگاه ها و کشفیات او اهمیت چندانی نداد و نتایج کارهای مندل به دست فراموشی سپرده شد. و به نظر می رسید ، پرونده این دانش رو به بسته شدن است. در سال 1900 میلادی کشف مجدد قوانین ارائه شده از سوی مندل ، توسط درویس ، شرماک و کورنز باعث شد که نظریات او مورد توجه و قبول قرار گرفته و مندل به عنوان پدر علم ژنتیک شناخته شود.

در سال 1953 با کشف ساختمان جایگاه ژنها (DNA) از سوی جیمز واتسن و فرانسیس کریک ، رشته ای جدید در علم زیست شناسی به وجود آمد که زیست شناسی ملکولی نام گرفت . با حدود گذشت یک قرن از کشفیات مندل در خلال سالهای 1971 و 1973 در رشته زیست شناسی ملکولی و ژنتیک که اولی به بررسی ساختمان و مکانیسم عمل ژنها و دومی به بررسی بیماری های ژنتیک و پیدا کردن درمانی برای آنها می پرداخت ، ادغام شدند و رشته ای به نام مهندسی ژنتیک را به وجود آوردند که طی اندک زمانی توانست رشته های مختلفی اعم از پزشکی ، صنعت و کشاورزی را تحت الشعاع خود قرار دهد و دیدگاه های مختلف عصر حاضر را به خود اختصاص دهد.

اساس مهندسی ژنتیک و بیوتکنولوژی انتقال یک یا تعدادی از ژنهای یک ارگانیسم به درون خزانه ژنتیکی یک ارگانیسم دیگر است. به این ترتیب ارگانیسم جدید واجد ژنهایی خواهد شد که در گذشته فاقد آن بوده و اینک وادار می شود که در شرایط محیطی مناسب اقدام به بیان آن ژن نماید که محصول آن می تواند منجر به بروز صفت خاص و یا تولید فراورده ای شود.

مهندسی ژنتیک و بیوتکنولوژی در چند سال اخیر توانسته منشأ خدمات ارزنده ای برای نوع بشر باشد. از مهمترین دستاوردهای این دانش می توان تأثیر آن را حیطه های مختلف از جمله صلاح نژادی حیوانات و گیاهان با هدف تولید فراورده های بیشتر، تهیه داروها و هورمون ها با درجه خلوص بالا و صرف هزینه های پایین ، درمان بیماری های ژنتیکی با ایجاد تغییرات در سلول تخم و موار متعدد دیگر اشاره کرد. تشخیص قبل از بارداری بیماری های ژنتیکی ، تشخیص صحت رابطه فرزند با پدر و مادر و همچنین تکنیک شناسایی مجرمان از روی بقایای باقی مانده از بدن ، مو و یا خون آنها از جمله توانایی های دیگر ژنتیک مولکولی است.در نگاهی دیگر دورنمای دانش ژنتیک و بیوتکنولوژی بسیار زیبا جلوه می کند. تولید اعضای بدن از قلب گرفته تا چشم و دست و پا به صورت مجزا از طریق مهندسی ژنتیک و ارایه آنها به بانکهای اعضای بدن با هدف کمک به نیازمندان پیوند عضو ، یکی از این موارد است. به این ترتیب مشکل دفع پیوند حل خواهد شد و مخصوصاً در صورتی که عضو پیوندی از دارای خزانه ژنتیک همان فرد باشد هیچ آنتی ژن بیگانه ای نمیتواند عامل دفع عضو باشد. درمان بسیاری از بیماری های ژنتیکی مخصوصاً در دوره جنینی قابل درمان خواهد بود. هویت افراد از روی کارتهای شناسایی که بر پایه وراثت و ژنتیک آنها عمل می کند ممکن خواهد شد و مجرمان با گذاشتن کوچکترین اثر بیولوژیکی از خود مثل یک تار مو بسرعت شناسایی خواهند شد. دنیای آینده در تسخیر دانش ژنتیک خواهد بود و برای این علم نمیتوان پایانی قائل شد. اگر چه به نظر می رسد مثل هر دانش دیگری، این علم هم می تواند ابزاری برای ارضاء حس قدرت طلبی بسیاری از سیاستمداران باشد و تا کنون شاهد جنجالهای بسیاری زیادی هم در این مورد بوده ایم. یکی از مهمترین موارد آن تولید گیاهان تراریخت و کلونینگ و همسانه سازی انسان بوده



خرید و دانلود تحقیق: تاریخچه علم ژنتیک


مقاله درباره تاریخچه علم ژنتیک

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 49

 

علم ژنتیک

تاریخچه علم ژنتیک

به عنوان مقدمه

دانش زیست شناسی یکی از قدیمی ترین علومی بوده که بشر به آن توجه داشته است. شواهد بسیار زیادی که طی کاوشهای باستان شناسی بدست آمده حکایت از آن دارد که انسانهای پیشین به دانش زیست شناسی توجه داشته اند و در این میان اصلاح نژاد دامها و پرورش گیاهان با باردهی بیشتر از دانش گذشتگان در مورد علم ژنتیک خبر می دهد. اما از حدود یک قرن پیش دانش زیست شناسی وارد مرحله جدیدی شد که بعدا آن را ژنتیک نامیده اند و این امر انقلابی در علم زیست شناسی به وجود آورد. در قرن هجدهم ، عده ای از پژوهشگران بر آن شدند که نحوه انتقال صفات ارثی را از نسلی به نسل دیگر بررسی کنند؛ این بررسی ها به نتیجه قابل ملاحضه ای ختم نشد. دو دلیل مهم آن عبارت بودند از آگاهی نداشتن به ریاضیات و دلیل دوم انتخاب صفاتی بود که برای پژوهش های اولیه ژنتیک مناسب نبودند.اولین کسی که توانست قوانین حاکم بر انتقال صفات ارثی را شناسایی کند، کشیشی اتریشی به نام گریگور مندل بود که در سال 1865 این قوانین را که حاصل آزمایشاتش روی گیاه نخود فرنگی بود، ارائه کرد. این در حالی بودکه جامعه علمی آن دوران به دیدگاه ها و کشفیات او اهمیت چندانی نداد و نتایج کارهای مندل به دست فراموشی سپرده شد. و به نظر می رسید ، پرونده این دانش رو به بسته شدن است. در سال 1900 میلادی کشف مجدد قوانین ارائه شده از سوی مندل ، توسط درویس ، شرماک و کورنز باعث شد که نظریات او مورد توجه و قبول قرار گرفته و مندل به عنوان پدر علم ژنتیک شناخته شود.

در سال 1953 با کشف ساختمان جایگاه ژنها (DNA) از سوی جیمز واتسن و فرانسیس کریک ، رشته ای جدید در علم زیست شناسی به وجود آمد که زیست شناسی ملکولی نام گرفت . با حدود گذشت یک قرن از کشفیات مندل در خلال سالهای 1971 و 1973 در رشته زیست شناسی ملکولی و ژنتیک که اولی به بررسی ساختمان و مکانیسم عمل ژنها و دومی به بررسی بیماری های ژنتیک و پیدا کردن درمانی برای آنها می پرداخت ، ادغام شدند و رشته ای به نام مهندسی ژنتیک را به وجود آوردند که طی اندک زمانی توانست رشته های مختلفی اعم از پزشکی ، صنعت و کشاورزی را تحت الشعاع خود قرار دهد و دیدگاه های مختلف عصر حاضر را به خود اختصاص دهد.

اساس مهندسی ژنتیک و بیوتکنولوژی انتقال یک یا تعدادی از ژنهای یک ارگانیسم به درون خزانه ژنتیکی یک ارگانیسم دیگر است. به این ترتیب ارگانیسم جدید واجد ژنهایی خواهد شد که در گذشته فاقد آن بوده و اینک وادار می شود که در شرایط محیطی مناسب اقدام به بیان آن ژن نماید که محصول آن می تواند منجر به بروز صفت خاص و یا تولید فراورده ای شود.

مهندسی ژنتیک و بیوتکنولوژی در چند سال اخیر توانسته منشأ خدمات ارزنده ای برای نوع بشر باشد. از مهمترین دستاوردهای این دانش می توان تأثیر آن را حیطه های مختلف از جمله صلاح نژادی حیوانات و گیاهان با هدف تولید فراورده های بیشتر، تهیه داروها و هورمون ها با درجه خلوص بالا و صرف هزینه های پایین ، درمان بیماری های ژنتیکی با ایجاد تغییرات در سلول تخم و موار متعدد دیگر اشاره کرد. تشخیص قبل از بارداری بیماری های ژنتیکی ، تشخیص صحت رابطه فرزند با پدر و مادر و همچنین تکنیک شناسایی مجرمان از روی بقایای باقی مانده از بدن ، مو و یا خون آنها از جمله توانایی های دیگر ژنتیک مولکولی است.در نگاهی دیگر دورنمای دانش ژنتیک و بیوتکنولوژی بسیار زیبا جلوه می کند. تولید اعضای بدن از قلب گرفته تا چشم و دست و پا به صورت مجزا از طریق مهندسی ژنتیک و ارایه آنها به بانکهای اعضای بدن با هدف کمک به نیازمندان پیوند عضو ، یکی از این موارد است. به این ترتیب مشکل دفع پیوند حل خواهد شد و مخصوصاً در صورتی که عضو پیوندی از دارای خزانه ژنتیک همان فرد باشد هیچ آنتی ژن بیگانه ای نمیتواند عامل دفع عضو باشد. درمان بسیاری از بیماری های ژنتیکی مخصوصاً در دوره جنینی قابل درمان خواهد بود. هویت افراد از روی کارتهای شناسایی که بر پایه وراثت و ژنتیک آنها عمل می کند ممکن خواهد شد و مجرمان با گذاشتن کوچکترین اثر بیولوژیکی از خود مثل یک تار مو بسرعت شناسایی خواهند شد. دنیای آینده در تسخیر دانش ژنتیک خواهد بود و برای این علم نمیتوان پایانی قائل شد. اگر چه به نظر می رسد مثل هر دانش دیگری، این علم هم می تواند ابزاری برای ارضاء حس قدرت طلبی بسیاری از سیاستمداران باشد و تا کنون شاهد جنجالهای بسیاری زیادی هم در این مورد بوده ایم. یکی از مهمترین موارد آن تولید گیاهان تراریخت و کلونینگ و همسانه سازی انسان بوده



خرید و دانلود مقاله درباره تاریخچه علم ژنتیک